Graphene: Piecing it Together

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Mark H. Ruemmeli - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Claudia G. Rocha - , Technische Universität Dresden (Autor:in)
  • Frank Ortmann - , Computational Nanoelectronics (NFoG) (cfaed), Université de Toulon, Commissariat à l’énergie atomique et aux énergies alternatives (CEA) (Autor:in)
  • Imad Ibrahim - , Professur für Nanoelektronik, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Haldun Sevincli - , Technische Universität Dresden (Autor:in)
  • Felix Boerrnert - , Professur für Physikalische Messtechnik, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Jens Kunstmann - , Professur für Theoretische Chemie, Österreichische Akademie der Wissenschaften, Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Alicja Bachmatiuk - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Markus Poetschke - , Technische Universität Dresden (Autor:in)
  • Masashi Shiraishi - , Osaka Medical and Pharmaceutical University (Autor:in)
  • M. Meyyappan - , Pohang University of Science and Technology, NASA Goddard Space Flight Center (Autor:in)
  • Bernd Buechner - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Stephan Roche - , Technische Universität Dresden, Consejo Superior de Investigaciones Científicas, Autonomous University of Barcelona, ICREA (Autor:in)
  • Gianaurelio Cuniberti - , Professur für Materialwissenschaft und Nanotechnik, Österreichische Akademie der Wissenschaften, Leibniz-Institut für Polymerforschung Dresden, Pohang University of Science and Technology, Div IT Convergence Engn (Autor:in)

Abstract

Graphene has a multitude of striking properties that make it an exceedingly attractive material for various applications, many of which will emerge over the next decade. However, one of the most promising applications lie in exploiting its peculiar electronic properties which are governed by its electrons obeying a linear dispersion relation. This leads to the observation of half integer quantum hall effect and the absence of localization. The latter is attractive for graphene-based field effect transistors. However, if graphene is to be the material for future electronics, then significant hurdles need to be surmounted, namely, it needs to be mass produced in an economically viable manner and be of high crystalline quality with no or virtually no defects or grains boundaries. Moreover, it will need to be processable with atomic precision. Hence, the future of graphene as a material for electronic based devices will depend heavily on our ability to piece graphene together as a single crystal and define its edges with atomic precision. In this progress report, the properties of graphene that make it so attractive as a material for electronics is introduced to the reader. The focus then centers on current synthesis strategies for graphene and their weaknesses in terms of electronics applications are highlighted.

Details

OriginalspracheEnglisch
Seiten (von - bis)4471-4490
Seitenumfang20
FachzeitschriftAdvanced Materials
Jahrgang23
Ausgabenummer39
PublikationsstatusVeröffentlicht - 18 Okt. 2011
Peer-Review-StatusJa

Externe IDs

WOS 000297008100001
PubMed 22103000
Scopus 80054683969

Schlagworte

Schlagwörter

  • Chemical-vapor-deposition, Field-effect transistors, Nitrogen-doped graphene, Epitaxial-graphene, Large-area, Carbon nanotubes, Thin-film, Ballistic transport, Disordered graphene, Facile synthesis