Grand Challenge: Real-time Social Network Graph Analysis using StreamMine3G
Publikation: Beitrag zu Konferenzen › Paper › Beigetragen › Begutachtung
Beitragende
Abstract
In this paper, we present our approach for solving the DEBS Grand Challenge 2016 using StreamMine3G, a distributed, highly scalable, elastic and fault tolerant event stream processing (ESP) system. We first provide an overview about StreamMine3G with regards to its programming model and architecture, followed by thorough description of the implementation for the two queries that provide up-to-date information about (i) the top-3 active posts and (ii) the top-k comments with the largest maximum cliques. Novel aspects of our implementation include (i) highly optimized data structures that lower the amount of lookups and traversals, and a (ii) deterministic data partitioning and processing scheme that allows the system to scale without bounds in an elastic fashion while still guaranteeing semantic transparency. In order to better utilize nowadays many-core machines, we furthermore propose a pipelining scheme in addition to data partitioning. Finally, we present a brief performance evaluation of our system.
Details
Originalsprache | Englisch |
---|---|
Seiten | 322-329 |
Seitenumfang | 8 |
Publikationsstatus | Veröffentlicht - 2016 |
Peer-Review-Status | Ja |
Konferenz
Titel | 10th ACM International Conference on Distributed Event-Based Systems |
---|---|
Kurztitel | DEBS '16 |
Dauer | 20 - 24 Juni 2016 |
Bekanntheitsgrad | Internationale Veranstaltung |
Stadt | Irvine |
Land | USA/Vereinigte Staaten |
Externe IDs
Scopus | 84978698318 |
---|
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Schlagwörter
- CEP, ESP, complex event processing, event stream processing, fault tolerance, migration, scalability, state management