Grad-div stabilized discretizations on S-type meshes for the Oseen problem
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We consider discretizations of the singularly perturbed Oseen equations on properly layer-adapted meshes. Using a suitable solution decomposition, we are able to prove optimal convergence orders in the associated energy norm for grad-div stabilized finite element methods in a general setting. Two families of pairs of discrete function spaces, namely Qk × Qk−1 and Qk × Pkdisc−1, k ≥ 2, are investigated in detail. The usage of a standard nonstabilized Galerkin method reduces the order by 1 while stabilization outside the layers is enough to regain the full optimal order.
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 299-329 |
| Seitenumfang | 31 |
| Fachzeitschrift | IMA journal of numerical analysis |
| Jahrgang | 38 |
| Ausgabenummer | 1 |
| Publikationsstatus | Veröffentlicht - 1 Jan. 2018 |
| Peer-Review-Status | Ja |
Externe IDs
| ORCID | /0000-0002-2458-1597/work/142239732 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Grad-div stabilization, Layer-adapted meshes, Oseen equations, Singular perturbations