Grad-div stabilized discretizations on S-type meshes for the Oseen problem

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Abstract

We consider discretizations of the singularly perturbed Oseen equations on properly layer-adapted meshes. Using a suitable solution decomposition, we are able to prove optimal convergence orders in the associated energy norm for grad-div stabilized finite element methods in a general setting. Two families of pairs of discrete function spaces, namely Qk × Qk1 and Qk × Pkdisc1, k ≥ 2, are investigated in detail. The usage of a standard nonstabilized Galerkin method reduces the order by 1 while stabilization outside the layers is enough to regain the full optimal order.

Details

OriginalspracheEnglisch
Seiten (von - bis)299-329
Seitenumfang31
FachzeitschriftIMA journal of numerical analysis
Jahrgang38
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Jan. 2018
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-2458-1597/work/142239732

Schlagworte

Schlagwörter

  • Grad-div stabilization, Layer-adapted meshes, Oseen equations, Singular perturbations