Global parameter identification of stochastic reaction networks from single trajectories

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Christian L. Müller - , ETH Zurich (Autor:in)
  • Rajesh Ramaswamy - , ETH Zurich (Autor:in)
  • Ivo F. Sbalzarini - , ETH Zurich (Autor:in)

Abstract

We consider the problem of inferring the unknown parameters of a stochastic biochemical network model from a single measured time-course of the concentration of some of the involved species. Such measurements are available, e.g., from live-cell fluorescence microscopy in image-based systems biology. In addition, fluctuation time-courses from, e.g., fluorescence correlation spectroscopy (FCS) provide additional information about the system dynamics that can be used to more robustly infer parameters than when considering only mean concentrations. Estimating model parameters from a single experimental trajectory enables single-cell measurements and quantification of cell-cell variability. We propose a novel combination of an adaptive Monte Carlo sampler, called Gaussian Adaptation (GaA), and efficient exact stochastic simulation algorithms (SSA) that allows parameter identification from single stochastic trajectories. We benchmark the proposed method on a linear and a non-linear reaction network at steady state and during transient phases. In addition, we demonstrate that the present method also provides an ellipsoidal volume estimate of the viable part of parameter space and is able to estimate the physical volume of the compartment in which the observed reactions take place.

Details

OriginalspracheEnglisch
TitelAdvances in Systems Biology
Seiten477-498
Seitenumfang22
PublikationsstatusVeröffentlicht - 2012
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheAdvances in Experimental Medicine and Biology
Band736
ISSN0065-2598

Externe IDs

PubMed 22161347
ORCID /0000-0003-4414-4340/work/159608301

Schlagworte