Global Genetic Variations Predict Brain Response to Faces

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • University of Toronto
  • Koninklijke Philips N.V.
  • Zentralinstitut für Seelische Gesundheit (ZI)
  • Universität Heidelberg
  • King's College London (KCL)
  • Trinity College Dublin
  • Universität Hamburg
  • University of Montreal
  • University of Vermont
  • Charité – Universitätsmedizin Berlin
  • University of Nottingham
  • Physikalisch-Technische Bundesanstalt
  • Universitätsklinikum Heidelberg
  • INSERM - Institut national de la santé et de la recherche médicale
  • Assistance publique – Hôpitaux de Paris
  • Service Hospitalier Frederic Joliot
  • University of Warwick
  • Commissariat à l’énergie atomique et aux énergies alternatives (CEA)
  • Institut Pasteur Paris

Abstract

Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML), we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI) in a community-based sample of adolescents (n = 1,620). Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40–50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R2 = 0.38, p<0.001). Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001) and the magnitude of brain response (R2 = 0.32, p<0.001). Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network.

Details

OriginalspracheEnglisch
Aufsatznummere1004523
Seiten (von - bis)1-11
Seitenumfang11
FachzeitschriftPLOS genetics
Jahrgang10
Ausgabenummer8
PublikationsstatusElektronische Veröffentlichung vor Drucklegung - 14 Aug. 2014
Peer-Review-StatusJa

Externe IDs

PubMed 25122193
ORCID /0000-0001-5099-0274/work/161409338
ORCID /0000-0001-5398-5569/work/161409041