Global characterization of the CEC 2005 fitness landscapes using fitness-distance analysis
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
We interpret real-valued black-box optimization problems over continuous domains as black-box landscapes. The performance of a given optimization heuristic on a given problem largely depends on the characteristics of the corresponding landscape. Designing statistical measures that can be used to classify landscapes and quantify their topographical properties is hence of great importance. We transfer the concept of fitness-distance analysis from theoretical biology and discrete combinatorial optimization to continuous optimization and assess its potential to characterize black-box landscapes. Using the CEC 2005 benchmark functions, we empirically test the robustness and accuracy of the resulting landscape characterization and illustrate the limitations of fitness-distance analysis. This provides a first step toward a classification of real-valued black-box landscapes over continuous domains.
Details
Originalsprache | Englisch |
---|---|
Titel | Applications of Evolutionary Computation - EvoApplications 2011 |
Seiten | 294-303 |
Seitenumfang | 10 |
Auflage | PART 1 |
Publikationsstatus | Veröffentlicht - 2011 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Publikationsreihe
Reihe | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Nummer | PART 1 |
Band | 6624 LNCS |
ISSN | 0302-9743 |
Konferenz
Titel | EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, EvoApplications 2011 |
---|---|
Dauer | 27 - 29 April 2011 |
Stadt | Torino |
Land | Italien |
Externe IDs
ORCID | /0000-0003-4414-4340/work/159608310 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- continuous black-box optimization, Fitness landscape, fitness-distance correlation, landscape characterization