Geometry on the manifold of Gaussian quantum channels

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

In the space of quantum channels, we establish the geometry that allows us to make statistical predictions about relative volumes of entanglement breaking channels among all the Gaussian quantum channels. The underlying metric is constructed using the Choi-Jamiołkowski isomorphism between the continuous-variable Gaussian states and channels. This construction involves the Hilbert-Schmidt distance in quantum state space. The volume element of the one-mode Gaussian channels can be expressed in terms of local symplectic invariants. We analytically compute the relative volumes of the one-mode Gaussian entanglement breaking and incompatibility breaking channels. Finally, we show that, when given the purities of the Choi-Jamiołkowski state of the channel, one can determine whether or not such channel is incompatibility breaking.

Details

OriginalspracheEnglisch
Seiten (von - bis)1-8
Seitenumfang8
FachzeitschriftPhysical Review A
Ausgabenummer062308
PublikationsstatusVeröffentlicht - 2019
Peer-Review-StatusJa

Externe IDs

Scopus 85077069941
ORCID /0000-0002-7806-3525/work/142234168

Schlagworte

Schlagwörter

  • quantum channels