Geometrical Optimization and Thermal-Stability Characterization of Te-Free Thermoelectric Modules Based on MgAgSb/Mg3(Bi,Sb)2

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Pingjun Ying - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Heiko Reith - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Kornelius Nielsch - , Institut für Angewandte Physik (IAP), Professur für Metallische Werkstoffe und Metallphysik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Technische Universität Dresden (Autor:in)
  • Ran He - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)

Abstract

Solid-state thermoelectric (TE) technology is a promising approach to harvest low-grade waste heat (<573 K) and converts it to useful electricity in industrial and civilian settings. After decades of efforts in improving the figure-of-merit (zT) of TE materials, the development of advanced modules has started springing up in recent years. Although high-performance modules have been largely reported based on the successful material improvement, it remains less investigated how and whether the module-level designs can further increase the conversion efficiency. Herein, following the recent demonstration of a tellurium (Te)-free TE generator, an increase is demonstrated in the efficiency by reducing both the electrical and thermal energy losses through simply optimizing geometric factors of filling factor and leg-pair numbers. These module-level optimizations enable a record conversion efficiency of 8.2% under a ∆T ≈ 260 K, thus fulfilling 90% of the theoretical efficiency of the materials and solidly exceeding the Bi2Te3 modules. Furthermore, module robustness against > 10 160 thermal cycles while preserving a relative efficiency of 95% is demonstrated. These findings highlight the importance of the optimization strategy at the module level and demonstrate the feasibility of using Te-free thermoelectric compounds to harvest the omnipresent low-grade heat.

Details

OriginalspracheEnglisch
Aufsatznummer2201183
FachzeitschriftSmall
Jahrgang18
Ausgabenummer24
PublikationsstatusVeröffentlicht - 16 Juni 2022
Peer-Review-StatusJa

Externe IDs

PubMed 35484476

Schlagworte

Schlagwörter

  • efficiency, module optimization, tellurium-free thermoelectrics, thermal cycling