Geodesic finite elements of higher order

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Oliver Sander - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)

Abstract

We generalize geodesic finite elements to obtain spaces of higher approximation order. Our approach uses a Riemannian center of mass with a signed measure. We prove well-definedness of this new center of mass under suitable conditions. As a side product we can define geodesic finite elements for non-simplex reference elements such as cubes and prisms. We prove smoothness of the interpolation functions, and various invariance properties. Numerical tests show that the optimal convergence orders of the discretization error known from the linear theory are obtained also in the nonlinear setting.

Details

OriginalspracheEnglisch
Seiten (von - bis)238-266
Seitenumfang29
FachzeitschriftIMA Journal of Numerical Analysis
Jahrgang36
Ausgabenummer1
PublikationsstatusVeröffentlicht - 2016
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 84959116665
ORCID /0000-0003-1093-6374/work/142250550

Schlagworte

Schlagwörter

  • geodesic finite elements, liquid crystals, cosserat materials, manifold-valued functions, harmonic maps