Geodesic finite elements of higher order
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We generalize geodesic finite elements to obtain spaces of higher approximation order. Our approach uses a Riemannian center of mass with a signed measure. We prove well-definedness of this new center of mass under suitable conditions. As a side product we can define geodesic finite elements for non-simplex reference elements such as cubes and prisms. We prove smoothness of the interpolation functions, and various invariance properties. Numerical tests show that the optimal convergence orders of the discretization error known from the linear theory are obtained also in the nonlinear setting.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 238-266 |
Seitenumfang | 29 |
Fachzeitschrift | IMA Journal of Numerical Analysis |
Jahrgang | 36 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 2016 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Externe IDs
Scopus | 84959116665 |
---|---|
ORCID | /0000-0003-1093-6374/work/142250550 |
Schlagworte
Schlagwörter
- geodesic finite elements, liquid crystals, cosserat materials, manifold-valued functions, harmonic maps