Generation of Terahertz Radiation via the Transverse Thermoelectric Effect

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Petar Yordanov - , Max-Planck-Institut für Festkörperforschung (Autor:in)
  • Tim Priessnitz - , Max-Planck-Institut für Festkörperforschung, Universität Stuttgart (Autor:in)
  • Min-Jae Kim - , Professur für Ultraschnelle Festkörperphysik und Photonik, Max-Planck-Institut für Festkörperforschung, Universität Stuttgart (Autor:in)
  • Georg Cristiani - , Max-Planck-Institut für Festkörperforschung (Autor:in)
  • Gennady Logvenov - , Max-Planck-Institut für Festkörperforschung (Autor:in)
  • Bernhard Keimer - , Max-Planck-Institut für Festkörperforschung (Autor:in)
  • Stefan Kaiser - , Professur für Ultraschnelle Festkörperphysik und Photonik, Max-Planck-Institut für Festkörperforschung, Universität Stuttgart (Autor:in)

Abstract

Terahertz (THz) radiation is a powerful tool with widespread applications ranging from imaging, sensing, and broadband communications to spectroscopy and nonlinear control of materials. Future progress in THz technology depends on the development of efficient, structurally simple THz emitters that can be implemented in advanced miniaturized devices. Here, it is shown how the natural electronic anisotropy of layered conducting transition metal oxides enables the generation of intense terahertz radiation via the transverse thermoelectric effect. In thin films grown on off-cut substrates, femtosecond laser pulses generate ultrafast out-of-plane temperature gradients, which in turn launch in-plane thermoelectric currents, thus allowing efficient emission of the resulting THz field out of the film structure. This scheme is demonstrated in experiments on thin films of the layered metals PdCoO2 and La1.84Sr0.16CuO4, and model calculations that elucidate the influence of the material parameters on the intensity and spectral characteristics of the emitted THz field are presented. Due to its simplicity, the method opens up a promising avenue for the development of highly versatile THz sources and integrable emitter elements.

Details

OriginalspracheEnglisch
Aufsatznummer2305622
Seitenumfang8
FachzeitschriftAdvanced materials
Jahrgang35 (2023)
Ausgabenummer41
PublikationsstatusVeröffentlicht - 8 Sept. 2023
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-9862-2788/work/145699094

Schlagworte

Schlagwörter

  • layered conducting transition metal oxides, off-cut thin films, terahertz generation, THz emission spectroscopy, transverse thermoelectric effect