Generalized fractional entropy functions with an application in hierarchical clustering

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Churong Chen - , Guangdong Polytechnic Normal University, Technische Universität Dresden (Autor:in)
  • Johannes Stojanow - , Technische Universität Hamburg (Autor:in)

Abstract

We establish novel entropy functions based on some types of generalized fractional derivatives. Classic entropy functions are included in the results obtained in this paper. As an application in information theory and probability theory, we use these entropy functions to measure the uncertainty and similarity of data collected from crop-sown areas in 32 regions. For doing this, the approach of hierarchical clustering with the average-linkage method is used and three visual dendrograms are offered in the end.

Details

OriginalspracheEnglisch
Seiten (von - bis)10074-10094
Seitenumfang21
FachzeitschriftMathematical Methods in the Applied Sciences
Jahrgang46
Ausgabenummer9
PublikationsstatusVeröffentlicht - Juni 2023
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • entropy function, generalized Hilfer-type fractional derivatives, generalized tempered Caputo-type fractional derivatives, generalized tempered Riemann–Liouville-type fractional derivatives