Generalized fractional entropy functions with an application in hierarchical clustering
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We establish novel entropy functions based on some types of generalized fractional derivatives. Classic entropy functions are included in the results obtained in this paper. As an application in information theory and probability theory, we use these entropy functions to measure the uncertainty and similarity of data collected from crop-sown areas in 32 regions. For doing this, the approach of hierarchical clustering with the average-linkage method is used and three visual dendrograms are offered in the end.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 10074-10094 |
Seitenumfang | 21 |
Fachzeitschrift | Mathematical Methods in the Applied Sciences |
Jahrgang | 46 |
Ausgabenummer | 9 |
Publikationsstatus | Veröffentlicht - Juni 2023 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- entropy function, generalized Hilfer-type fractional derivatives, generalized tempered Caputo-type fractional derivatives, generalized tempered Riemann–Liouville-type fractional derivatives