Gaussian adaptation revisited - An entropic view on covariance matrix adaptation

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Christian L. Müller - , ETH Zurich (Autor:in)
  • Ivo F. Sbalzarini - , ETH Zurich (Autor:in)

Abstract

We revisit Gaussian Adaptation (GaA), a black-box optimizer for discrete and continuous problems that has been developed in the late 1960's. This largely neglected search heuristic shares several interesting features with the well-known Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and with Simulated Annealing (SA). GaA samples single candidate solutions from a multivariate normal distribution and continuously adapts its first and second moments (mean and covariance) such as to maximize the entropy of the search distribution. Sample-point selection is controlled by a monotonically decreasing acceptance threshold, reminiscent of the cooling schedule in SA. We describe the theoretical foundations of GaA and analyze some key features of this algorithm. We empirically show that GaA converges log-linearly on the sphere function and analyze its behavior on selected non-convex test functions.

Details

OriginalspracheEnglisch
TitelApplications of Evolutionary Computation - EvoApplicatons 2010
Herausgeber (Verlag)Springer-Verlag
Seiten432-441
Seitenumfang10
AuflagePART 1
ISBN (Print)3642122388, 9783642122385
PublikationsstatusVeröffentlicht - 2010
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NummerPART 1
Band6024 LNCS
ISSN0302-9743

Konferenz

TitelEvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, EvoApplicatons 2010
Dauer7 - 9 April 2010
StadtIstanbul
LandTürkei

Externe IDs

ORCID /0000-0003-4414-4340/work/159608324

Schlagworte

Schlagwörter

  • Black-Box Optimization, Covariance Matrix Adaptation, Entropy, Evolution Strategy, Gaussian Adaptation