Galois theory over rings of arithmetic power series

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Arno Fehm - , Tel Aviv University (Autor:in)
  • Elad Paran - , Hebrew University of Jerusalem (Autor:in)

Abstract

Let R be a domain, complete with respect to a norm which defines a non-discrete topology on R. We prove that the quotient field of R is ample, generalizing a theorem of Pop. We then consider the case where R is a ring of arithmetic power series which are holomorphic on the closed disc of radius 0 < r < 1 around the origin, and apply the above result to prove that the absolute Galois group of the quotient field of R is semi-free. This strengthens a theorem of Harbater, who solved the inverse Galois problem over these fields. (C) 2010 Elsevier Inc. All rights reserved.

Details

OriginalspracheEnglisch
Seiten (von - bis)4183-4197
Seitenumfang15
FachzeitschriftAdvances in mathematics
Jahrgang226
Ausgabenummer5
PublikationsstatusVeröffentlicht - 20 März 2011
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 79551593726

Schlagworte

Schlagwörter

  • Ample fields, Galois theory, Large fields, Power series, Semi-free profinite groups, Split embedding problems

Bibliotheksschlagworte