Galois theory over rings of arithmetic power series
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Let R be a domain, complete with respect to a norm which defines a non-discrete topology on R. We prove that the quotient field of R is ample, generalizing a theorem of Pop. We then consider the case where R is a ring of arithmetic power series which are holomorphic on the closed disc of radius 0 < r < 1 around the origin, and apply the above result to prove that the absolute Galois group of the quotient field of R is semi-free. This strengthens a theorem of Harbater, who solved the inverse Galois problem over these fields. (C) 2010 Elsevier Inc. All rights reserved.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 4183-4197 |
Seitenumfang | 15 |
Fachzeitschrift | Advances in mathematics |
Jahrgang | 226 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 20 März 2011 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Externe IDs
Scopus | 79551593726 |
---|
Schlagworte
Schlagwörter
- Ample fields, Galois theory, Large fields, Power series, Semi-free profinite groups, Split embedding problems