Gaia Data Release 3: All-sky classification of 12.4 million variable sources into 25 classes

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Lorenzo Rimoldini - , Universität Genf (Autor:in)
  • Berry Holl - , Universität Genf (Autor:in)
  • Panagiotis Gavras - , European Space Agency - ESA (Autor:in)
  • Marc Audard - , Universität Genf (Autor:in)
  • Joris De Ridder - , KU Leuven (Autor:in)
  • Nami Mowlavi - , Universität Genf (Autor:in)
  • Krzysztof Nienartowicz - , Sednai Sàrl (Autor:in)
  • Grégory Jevardat De Fombelle - , Universität Genf (Autor:in)
  • Isabelle Lecoeur-Taïbi - , Universität Genf (Autor:in)
  • Lea Karbevska - , Universität Genf, Université de Caen Normandie (Autor:in)
  • Dafydd W. Evans - , University of Cambridge (Autor:in)
  • Péter Ábrahám - , Magyar Tudományos Akadémia, University Eötvös Loránd (Autor:in)
  • Maria I. Carnerero - , Istituto Nazionale Di Astrofisica (INAF) (Autor:in)
  • Gisella Clementini - , Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna (OAS-INAF) (Autor:in)
  • Elisa Distefano - , Osservatorio Astrofisico di Catania (Autor:in)
  • Alessia Garofalo - , Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna (OAS-INAF) (Autor:in)
  • Pedro García-Lario - , European Space Astronomy Centre (Autor:in)
  • Roy Gomel - , Tel Aviv University (Autor:in)
  • Sergei A. Klioner - , Arbeitsgruppe Astronomie, Technische Universität Dresden (Autor:in)
  • Katarzyna Kruszyńska - , Universität Warschau (Autor:in)
  • Alessandro C. Lanzafame - , Osservatorio Astrofisico di Catania, Universita degli Studi di Catania (Autor:in)
  • Thomas Lebzelter - , Universität Wien (Autor:in)
  • Gábor Marton - , Magyar Tudományos Akadémia (Autor:in)
  • Tsevi Mazeh - , Tel Aviv University (Autor:in)
  • Roberto Molinaro - , Osservatorio Astronomico di Capodimonte (Autor:in)
  • Aviad Panahi - , Tel Aviv University (Autor:in)
  • Claudia M. Raiteri - , Istituto Nazionale Di Astrofisica (INAF) (Autor:in)
  • Vincenzo Ripepi - , Osservatorio Astronomico di Capodimonte (Autor:in)
  • László Szabados - , Magyar Tudományos Akadémia (Autor:in)
  • David Teyssier - , European Space Astronomy Centre (Autor:in)
  • Michele Trabucchi - , Universität Genf (Autor:in)
  • Łukasz Wyrzykowski - , Universität Warschau (Autor:in)
  • Shay Zucker - , Tel Aviv University (Autor:in)
  • Laurent Eyer - , Universität Genf (Autor:in)

Abstract

Context. Gaia DR3 contains 1.8 billion sources with G-band photometry, 1.5 billion of which with GBP and GRP photometry, complemented by positions on the sky, parallax, and proper motion. The median number of field-of-view transits in the three photometric bands is between 40 and 44 measurements per source and covers 34 months of data collection. Aims. We pursue a classification of Galactic and extra-galactic objects that are detected as variable by Gaia across the whole sky. Methods. Supervised machine learning (eXtreme Gradient Boosting and Random Forest) was employed to generate multi-class, binary, and meta-classifiers that classified variable objects with photometric time series in the G, GBP, and GRP bands. Results. Classification results comprise 12.4 million sources (selected from a much larger set of potential variable objects) and include about 9 million variable stars classified into 22 variability types in the Milky Way and nearby galaxies such as the Magellanic Clouds and Andromeda, plus thousands of supernova explosions in distant galaxies, 1 million active galactic nuclei, and almost 2.5 million galaxies. The identification of galaxies was made possible by the artificial variability of extended objects as detected by Gaia, so they were published in the galaxy-candidates table of the Gaia DR3 archive, separate from the classifications of genuine variability (in the vari-classifier-result table). The latter contains 24 variability classes or class groups of periodic and non-periodic variables (pulsating, eclipsing, rotating, eruptive, cataclysmic, stochastic, and microlensing), with amplitudes from a few milli-magnitudes to several magnitudes.

Details

OriginalspracheEnglisch
AufsatznummerA14
Seitenumfang105
FachzeitschriftAstronomy and Astrophysics
Jahrgang674(2023)
PublikationsstatusVeröffentlicht - 16 Juni 2023
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-4682-7831/work/168206698

Schlagworte

Schlagwörter

  • Catalogs, Galaxies: general, Methods: data analysis, Quasars: general, Stars: variables: general