Functional a posteriori error estimates for boundary element methods

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Stefan Kurz - , Technische Universität Darmstadt (Autor:in)
  • Dirk Pauly - , Institut für Analysis, Universität Duisburg-Essen (Autor:in)
  • Dirk Praetorius - , Technische Universitat Wien (Autor:in)
  • Sergey Repin - , University of Jyväskylä, RAS - Saint Petersburg Department of Steklov Institute of Mathematics (Autor:in)
  • Daniel Sebastian - , Technische Universitat Wien (Autor:in)

Abstract

Functional error estimates are well-established tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results.

Details

OriginalspracheEnglisch
Seiten (von - bis)937-966
Seitenumfang30
FachzeitschriftNumerische Mathematik
Jahrgang147
Ausgabenummer4
PublikationsstatusVeröffentlicht - Apr. 2021
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-4155-7297/work/145224240

Schlagworte

Schlagwörter

  • Adaptive mesh-refinement, Boundary element method, Functional a posteriori error estimate