From Precursor Chemistry to Gas Sensors: Plasma-Enhanced Atomic Layer Deposition Process Engineering for Zinc Oxide Layers from a Nonpyrophoric Zinc Precursor for Gas Barrier and Sensor Applications
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
The identification of bis-3-(N,N-dimethylamino)propyl zinc ([Zn(DMP)2], BDMPZ) as a safe and potential alternative to the highly pyrophoric diethyl zinc (DEZ) as atomic layer deposition (ALD) precursor for ZnO thin films is reported. Owing to the intramolecular stabilization, BDMPZ is a thermally stable, volatile, nonpyrophoric solid compound, however, it possesses a high reactivity due to the presence of Zn-C and Zn-N bonds in this complex. Employing this precursor, a new oxygen plasma enhanced (PE)ALD process in the deposition temperature range of 60 and 160 °C is developed. The resulting ZnO thin films are uniform, smooth, stoichiometric, and highly transparent. The deposition on polyethylene terephthalate (PET) at 60 °C results in dense and compact ZnO layers for a thickness as low as 7.5 nm with encouraging oxygen transmission rates (OTR) compared to the bare PET substrates. As a representative application of the ZnO layers, the gas sensing properties are investigated. A high response toward NO2 is observed without cross-sensitivities against NH3 and CO. Thus, the new PEALD process employing BDMPZ has the potential to be a safe substitute to the commonly used DEZ processes.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 1907506 |
Fachzeitschrift | Small |
Jahrgang | 16 |
Ausgabenummer | 22 |
Publikationsstatus | Veröffentlicht - 1 Juni 2020 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Externe IDs
PubMed | 32346997 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- atomic layer deposition, gas barrier layers, gas sensors, zinc oxide, zinc precursors