From Emerson-Lei automata to deterministic, limit-deterministic or good-for-MDP automata

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

The topic of this paper is the determinization problem of ω-automata under the transition-based Emerson-Lei acceptance (called TELA), which generalizes all standard acceptance conditions and is defined using positive Boolean formulas. Such automata can be determinized by first constructing an equivalent generalized Büchi automaton (GBA), which is later determinized. The problem of constructing an equivalent GBA is considered in detail, and three new approaches of solving it are proposed. Furthermore, a new determinization construction is introduced which determinizes several GBA separately and combines them using a product construction. An experimental evaluation shows that the product approach is competitive when compared with state-of-the-art determinization procedures. The second part of the paper studies limit-determinization of TELA and we show that this can be done with a single-exponential blow-up, in contrast to the known double-exponential lower-bound for determinization. Finally, one version of the limit-determinization procedure yields good-for-MDP automata which can be used for quantitative probabilistic model checking.

Details

OriginalspracheEnglisch
Seiten (von - bis)385–403
FachzeitschriftInnovations in Systems and Software Engineering
Jahrgang18
PublikationsstatusVeröffentlicht - 9 Apr. 2022
Peer-Review-StatusJa

Externe IDs

unpaywall 10.1007/s11334-022-00445-7
Mendeley 89bf3a52-0ffa-31b6-bfe2-06e8d68f5313

Schlagworte

Forschungsprofillinien der TU Dresden

    DFG-Fachsystematik nach Fachkollegium

      Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

        ASJC Scopus Sachgebiete

        Schlagwörter

        • Determinization algorithms, Emerson-Lei automata, Good-for-MDP automata, Limit-deterministic automata, Probabilistic model checking

        Bibliotheksschlagworte