From Data to Credits: Using ReadMe, Markdown, and Dublin Core for Better Documentation

Publikation: Beitrag zu KonferenzenPosterBeigetragen

Abstract

Effective documentation is crucial for good research data management (RDM) enabling reproducibility, data sharing, and collaboration. A common standard for information sharing in data publication is to write text files as generic “ReadMe”s. Using the markup language Markdown and the Dublin Core vocabulary allows for formatted and structured documentation. Theenrichment of datasets with these metadata , including licenses such as Creative Commons, ensures findability, attribution, and reusability in open science publication, as well as easy-to-understand descriptions for research partners. Furthermore, utilizing parsers to extract and validate metadata can streamline the documentation process. I will provide some practical tips and examples for implementing these concepts establishing a robust data life cycle in your research and facilitating data sharing and collaboration. Link to README.md: https://doi.org/10.5281/zenodo.14848834Link to Markdown-to-JSON-Parser: https://doi.org/10.5281/zenodo.14942696 and https://github.com/Bondoki/ParsingMetadataMD2JSON

Details

OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 2 Apr. 2025
Peer-Review-StatusNein

Konferenz

TitelFellowship of the Data — International RDM Community Meeting 2025
Veranstaltungsnummer2
Dauer1 - 2 April 2025
Webseite
OrtRosensäle Universität Jena
StadtJena
LandDeutschland

Schlagworte