From Cellular Automaton Rules to an Effective Macroscopic Mean-Field Description

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Abstract

Cellular automata (CA) may be viewed as simple models of self-organizing complex systems. Here, we focus on an important class of CA, the socalled lattice-gas cellular automata (LGCA), which have been proposed as models of spatio-temporal pattern formation in biology. As an example, we introduce a LGCA model for a simple biological growth process based on randomly moving and proliferating agents. We demonstrate how a mean-field approximation can yield insight into the formation of spatial patterns and calculate important macroscopic observables for the biological growth process. In particular, we address the role of the diffusion strength in the approximation by distinguishing well-stirred and spatially distributed cases. Finally, we discuss the potential and limitations of the mean-field description in analyzing biological pattern formation.

Details

OriginalspracheEnglisch
Seiten (von - bis)399-416
Seitenumfang18
FachzeitschriftActa Physica Polonica B, Proceedings Supplement
PublikationsstatusVeröffentlicht - 2010
Peer-Review-StatusJa

Externe IDs

Scopus 78651551971
ORCID /0000-0003-0137-5106/work/142244249
ORCID /0000-0002-1270-7885/work/142250322

Schlagworte

Schlagwörter

  • cellular, Macroscopic