Framed Curves, Ribbons, and Parallel Transport on the Sphere
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We consider curves γ: [0 , 1] → R3 endowed with an adapted orthonormal frame r: [0 , 1] → SO(3) . We wish to deform such framed curves (γ, r) while preserving two contraints: a local constraint prescribing one of its ‘curvatures’ (i.e., off-diagonal elements of r′rT), and a global constraint prescribing the initial and terminal values of γ and r. We proceed in two stages. First we deform the frame r in a way that is naturally compatible with the constraints on r, by interpreting the local constraint in terms of parallel transport on the sphere. This provides a link to the differential geometry of surfaces. The deformation of the base curve γ is achieved in a second step, by means of a suitable reparametrization of the frame. We illustrate this deformation procedure by providing some applications: first, we characterize the boundary conditions on (γ, r) that are accessible without violating the local constraint; then, we provide a short proof of a smooth approximation result for framed curves satisfying both the differential and the global constraints. Finally, we also apply these ideas to elastic ribbons with nonzero width.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 72 |
Seitenumfang | 34 |
Fachzeitschrift | Journal of nonlinear science |
Jahrgang | 33(2023) |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 16 Juni 2023 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Isometric immersions, Nonlinear elasticity, Ribbons