For which functions are 𝑓(𝑋_{𝑡})-𝔼𝕗(𝕏_{𝕥}) and 𝕘(𝕏_{𝕥})/𝔼𝕘(𝕏_{𝕥}) martingales?
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Let X = (Xt)t≥0 be a one-dimensional L´evy process such that each Xt has a C1-density w. r. t. Lebesgue measure and certain polynomial or exponen- tial moments. We characterize all polynomially bounded functions f: R → R, and exponentially bounded functions g: R → (0, ∞), such that f (Xt) − Ef (Xt), resp. g(Xt)/Eg(Xt), are martingales.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 79-91 |
Seitenumfang | 13 |
Fachzeitschrift | Theory of probability and mathematical statistics |
Jahrgang | 105 |
Publikationsstatus | Veröffentlicht - Juli 2021 |
Peer-Review-Status | Ja |
Externe IDs
Mendeley | 0aae219b-c976-3b34-b284-48009f17abc5 |
---|---|
unpaywall | 10.1090/tpms/1157 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Brownian motion, Cauchy functional equation, Choquet–Deny theorem, Convolution equation, Harmonic polynomial, Levy process, Martingale, Polynomial process