Flow-enhanced solution printing of all-polymer solar cells

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ying Diao - , Stanford University, Stanford Linear Accelerator Center (SLAC), University of Illinois at Urbana-Champaign (Autor:in)
  • Yan Zhou - , Stanford University, Stanford Linear Accelerator Center (SLAC) (Autor:in)
  • Tadanori Kurosawa - , Stanford University (Autor:in)
  • Leo Shaw - , Stanford University (Autor:in)
  • Cheng Wang - , Lawrence Berkeley National Laboratory (Autor:in)
  • Steve Park - , Stanford University (Autor:in)
  • Yikun Guo - , Peking University (Autor:in)
  • Julia A. Reinspach - , Stanford University (Autor:in)
  • Kevin Gu - , Stanford University (Autor:in)
  • Xiaodan Gu - , Stanford University, Stanford Linear Accelerator Center (SLAC) (Autor:in)
  • Benjamin C.K. Tee - , Stanford University (Autor:in)
  • Changhyun Pang - , Stanford University, Sungkyunkwan University (SKKU) (Autor:in)
  • Hongping Yan - , Stanford University, Stanford Linear Accelerator Center (SLAC) (Autor:in)
  • Dahui Zhao - , Peking University (Autor:in)
  • Michael F. Toney - , Stanford University (Autor:in)
  • Stefan C.B. Mannsfeld - , Center for Advancing Electronics Dresden (cfaed), SLAC National Accelerator Laboratory (Autor:in)
  • Zhenan Bao - , Stanford University, Stanford Linear Accelerator Center (SLAC) (Autor:in)

Abstract

Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.

Details

OriginalspracheEnglisch
Aufsatznummer7955
FachzeitschriftNature communications
Jahrgang6
PublikationsstatusVeröffentlicht - 12 Aug. 2015
Peer-Review-StatusJa