Flow through porous media at the percolation transition
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We study low-Reynolds-number fluid flow through a two-dimensional porous medium modeled as a Lorentz gas. Using extensive finite-element simulations we fully resolve the flow fields for packing fractions approaching the percolation threshold. Near the percolation transition, we find a power-law scaling of the flow rate versus the packing fraction with an exponent of ≈5/2, which was predicted earlier by mapping the macroscopic flow to a discrete flow network [B. I. Halperin, Phys. Rev. Lett. 54, 2391 (1985)0031-900710.1103/PhysRevLett.54.2391]. Importantly, we observe a rounding of the scaling behavior at small system sizes, which can be rationalized via a finite-size scaling ansatz. Finally, we show that the distribution of the kinetic energy exhibits a power-law scaling over several decades at small energies, originating from collections of self-similar, viscous eddies in the dead-end channels. Our results lay the foundation for unraveling critical behavior of complex fluids omnipresent in biological and geophysical systems.
Details
| Originalsprache | Englisch |
|---|---|
| Aufsatznummer | L012032 |
| Seitenumfang | 6 |
| Fachzeitschrift | Physical Review Research |
| Jahrgang | 7 (2025) |
| Ausgabenummer | 1 |
| Publikationsstatus | Veröffentlicht - 12 Feb. 2025 |
| Peer-Review-Status | Ja |