Flagella-like beating of actin bundles driven by self-organized myosin waves

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Marie Pochitaloff - , Institut Curie, University of California at Santa Barbara (Autor:in)
  • Martin Miranda - , Max-Planck-Institut für Physik komplexer Systeme (Autor:in)
  • Mathieu Richard - , Institut Curie (Autor:in)
  • Atitheb Chaiyasitdhi - , Institut Curie (Autor:in)
  • Yasuharu Takagi - , National Institutes of Health (NIH) (Autor:in)
  • Wenxiang Cao - , Yale University (Autor:in)
  • Enrique M. De La Cruz - , Yale University (Autor:in)
  • James R. Sellers - , National Institutes of Health (NIH) (Autor:in)
  • Jean François Joanny - , Institut Curie, College de France (Autor:in)
  • Frank Jülicher - , Max-Planck-Institut für Physik komplexer Systeme, Exzellenzcluster PoL: Physik des Lebens (Autor:in)
  • Laurent Blanchoin - , Université Grenoble Alpes, Hôpital Saint-Louis AP-HP (Autor:in)
  • Pascal Martin - , Institut Curie (Autor:in)

Abstract

Wave-like beating of eukaryotic cilia and flagella—threadlike protrusions found in many cells and microorganisms—is a classic example of spontaneous mechanical oscillations in biology. This type of self-organized active matter raises the question of the coordination mechanism between molecular motor activity and cytoskeletal filament bending. Here we show that in the presence of myosin motors, polymerizing actin filaments self-assemble into polar bundles that exhibit wave-like beating. Importantly, filament beating is associated with myosin density waves initiated at twice the frequency of the actin-bending waves. A theoretical description based on curvature control of motor binding to the filaments and of motor activity explains our observations in a regime of high internal friction. Overall, our results indicate that the binding of myosin to actin depends on the actin bundle shape, providing a feedback mechanism between the myosin activity and filament deformations for the self-organization of large motor filament assemblies.

Details

OriginalspracheEnglisch
Seiten (von - bis)1240-1247
Seitenumfang8
FachzeitschriftNature physics
Jahrgang18
Ausgabenummer10
PublikationsstatusVeröffentlicht - Okt. 2022
Peer-Review-StatusJa

Schlagworte

ASJC Scopus Sachgebiete

Bibliotheksschlagworte