Finite element discretization methods for velocity-pressure and stream function formulations of surface Stokes equations
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In this paper we study parametric TraceFEM and parametric SurfaceFEM (SFEM) discretizations of a surface Stokes problem. These methods are applied both to the Stokes problem in velocity-pressure formulation and in stream function formulation. A class of higher order methods is presented in a unified framework. Numerical efficiency aspects of the two formulations are discussed and a systematic comparison of TraceFEM and SFEM is given. A benchmark problem is introduced in which a scalar reference quantity is defined and numerically determined.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 4 |
Seiten (von - bis) | A1807-A1832 |
Fachzeitschrift | SIAM Journal of Scientific Computing |
Jahrgang | 44 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - 5 Juli 2022 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85131602137 |
---|---|
Mendeley | be83627a-a729-3134-9ad5-10e6f7ac44bb |
dblp | journals/siamsc/BrandnerJPRV22 |
WOS | 000863909200001 |
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
ASJC Scopus Sachgebiete
Schlagwörter
- surface Stokes equation, trace finite element method, TraceFEM, Surface Finite Elements, Taylor-Hood finite elements, stream function formulation, higher order surface approximation, surface finite element method, VORTICES, PDES, IMPLICIT GEOMETRIES, MOTION, INTERFACE, ERROR ANALYSIS, NAVIER-STOKES, DYNAMICS, FLOWS, DOMAINS