Ferroelectric Al1-xScxN Opposite State Retention Model Based on Switching Dynamics

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Roberto Guido - , Professur für Nanoelektronik, NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Maike Gremmel - , Christian-Albrechts-Universität zu Kiel (CAU) (Autor:in)
  • Thomas Mikolajick - , Professur für Nanoelektronik, NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Simon Fichtner - , Christian-Albrechts-Universität zu Kiel (CAU), Fraunhofer-Institut für Siliziumtechnologie (Autor:in)
  • Uwe Schroeder - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)

Abstract

Wurtzite-structured ferroelectrics, such as aluminum scandium nitride (Al1-xScxN), are among the most promising candidates for implementing innovative nonvolatile memory concepts into commercial technologies. However, the opposite state (OS) retention limits the long-term retention performances. Since verifying the retention requirement directly up to 10 years, as typically targeted by commercial technologies, is timely unfeasible, developing a model to predict the 10-year OS retention performances of wurtzite-structured ferroelectrics is of the utmost importance for validating their reliable long-term operation. This work demonstrates the imprint as the primary factor in determining the Al1-xScxN OS retention performances. A model to predict the 10-year OS retention performances of Al1-xScxN is developed by directly correlating the coercive field (Ec) increase with the slowing down of the switching dynamics through the relationship between the characteristic switching time and applied electric field magnitude to Ec ratio (E/Ec). The model is verified with OS retention measurements performed on Al0.85Sc0.15N capacitors after baking for up to 2 weeks at 150 °C. The E/Ec that guarantees reliable 10-year OS retention performances is extrapolated for pulse widths down to the nanosecond range. Finally, electric field switching cycling is proven as a viable strategy for recovering from the imprint that degrades OS retention performances.

Details

OriginalspracheEnglisch
Aufsatznummer2421793
FachzeitschriftAdvanced functional materials
Jahrgang35
Ausgabenummer31
PublikationsstatusElektronische Veröffentlichung vor Drucklegung - 6 März 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-3814-0378/work/181859845

Schlagworte

Schlagwörter

  • aluminum scandium nitride, ferroelectrics, imprint, retention, switching kinetics