Federated Learning with Local Differential Privacy: Trade-Offs between Privacy, Utility, and Communication

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Muah Kim - , Technische Universität Berlin (Autor:in)
  • Onur Günlü - , Technische Universität Berlin (Autor:in)
  • Rafael F. Schaefer - , Universität Siegen (Autor:in)

Abstract

Federated learning (FL) allows to train a massive amount of data privately due to its decentralized structure. Stochastic gradient descent (SGD) is commonly used for FL due to its good empirical performance, but sensitive user information can still be inferred from weight updates shared during FL iterations. We consider Gaussian mechanisms to preserve local differential privacy (LDP) of user data in the FL model with SGD. The trade-offs between user privacy, global utility, and transmission rate are proved by defining appropriate metrics for FL with LDP. Compared to existing results, the query sensitivity used in LDP is defined as a variable, and a tighter privacy accounting method is applied. The proposed utility bound allows heterogeneous parameters over all users. Our bounds characterize how much utility decreases and transmission rate increases if a stronger privacy regime is targeted. Furthermore, given a target privacy level, our results guarantee a significantly larger utility and a smaller transmission rate as compared to existing privacy accounting methods.

Details

OriginalspracheEnglisch
TitelICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Seiten2650-2654
Seitenumfang5
ISBN (elektronisch)978-1-7281-7605-5
PublikationsstatusVeröffentlicht - 2021
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheInternational Conference on Acoustics, Speech, and Signal Processing (ICASSP)
ISSN1520-6149

Konferenz

Titel2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021
Dauer6 - 11 Juni 2021
StadtVirtual, Toronto
LandKanada

Externe IDs

ORCID /0000-0002-1702-9075/work/165878299

Schlagworte

Schlagwörter

  • Composition theorems, Federated learning (fl), Gaussian randomization, Local differential privacy (ldp), Stochastic gradient descent (sgd)