Feature-based comparison and generation of time series

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

For more than three decades, researchers have been developping generation methods for the weather, energy, and economic domain. These methods provide generated datasets for reasons like system evaluation and data availability. However, despite the variety of approaches, there is no comparative and cross-domain assessment of generation methods and their expressiveness. We present a similarity measure that analyzes generation methods regarding general time series features. By this means, users can compare generation methods and validate whether a generated dataset is considered similar to a given dataset. Moreover, we propose a feature-based generation method that evolves cross-domain time series datasets. This method outperforms other generation methods regarding the feature-based similarity.

Details

OriginalspracheEnglisch
TitelScientific and Statistical Database Management - 30th International Conference, SSDBM 2018, Proceedings
Redakteure/-innenMichael Bohlen, Johann Gamper, Peer Kroger, Dimitris Sacharidis
Herausgeber (Verlag)Association for Computing Machinery (ACM), New York
Seiten20:1-20:12
Seitenumfang12
ISBN (elektronisch)9781450365055
PublikationsstatusVeröffentlicht - 9 Juli 2018
Peer-Review-StatusJa

Konferenz

Titel30th International Conference on Scientific and Statistical Database Management, SSDBM 2018
Dauer9 - 11 Juli 2018
StadtBolzano-Bozen
LandItalien

Externe IDs

Scopus 85054936435
ORCID /0000-0001-8107-2775/work/142253481

Schlagworte

Schlagwörter

  • Similarity measure, Time series features, Time series generation