Feature-based comparison and generation of time series
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
For more than three decades, researchers have been developping generation methods for the weather, energy, and economic domain. These methods provide generated datasets for reasons like system evaluation and data availability. However, despite the variety of approaches, there is no comparative and cross-domain assessment of generation methods and their expressiveness. We present a similarity measure that analyzes generation methods regarding general time series features. By this means, users can compare generation methods and validate whether a generated dataset is considered similar to a given dataset. Moreover, we propose a feature-based generation method that evolves cross-domain time series datasets. This method outperforms other generation methods regarding the feature-based similarity.
Details
Originalsprache | Englisch |
---|---|
Titel | Scientific and Statistical Database Management - 30th International Conference, SSDBM 2018, Proceedings |
Redakteure/-innen | Michael Bohlen, Johann Gamper, Peer Kroger, Dimitris Sacharidis |
Herausgeber (Verlag) | Association for Computing Machinery (ACM), New York |
Seiten | 20:1-20:12 |
Seitenumfang | 12 |
ISBN (elektronisch) | 9781450365055 |
Publikationsstatus | Veröffentlicht - 9 Juli 2018 |
Peer-Review-Status | Ja |
Konferenz
Titel | 30th International Conference on Scientific and Statistical Database Management, SSDBM 2018 |
---|---|
Dauer | 9 - 11 Juli 2018 |
Stadt | Bolzano-Bozen |
Land | Italien |
Externe IDs
Scopus | 85054936435 |
---|---|
ORCID | /0000-0001-8107-2775/work/142253481 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Similarity measure, Time series features, Time series generation