Feature-aware forecasting of large-scale time series data sets

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

The Internet of Things (IoT) sparks a revolution in time series forecasting. Traditional techniques forecast time series individually, which becomes unfeasible when the focus changes to thousands of time series exhibiting anomalies like noise and missing values. This work presents CSAR, a technique forecasting a set of time series with only one model, and a feature-aware partitioning applying CSAR on subsets of similar time series. These techniques provide accurate forecasts a hundred times faster than traditional techniques, preparing forecasting for the arising challenges of the IoT era.

Details

OriginalspracheEnglisch
Aufsatznummer3-4
Seiten (von - bis)157-168
Seitenumfang12
Fachzeitschriftit-Information Technology
Jahrgang62
Ausgabenummer3-4
PublikationsstatusVeröffentlicht - 27 Mai 2020
Peer-Review-StatusJa

Externe IDs

Scopus 85082064211
ORCID /0000-0001-8107-2775/work/142253446

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Big Data, Data Analytics, IoT, Time Series Forecasting