Fatigue monitoring and maneuver identification for vehicle fleets using a virtual sensing approach
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Extensive monitoring comes at a prohibitive cost, limiting Predictive Maintenance strategies for vehicle fleets. This paper presents a measurement-based virtual sensing technique where local strain gauges are only required for few reference vehicles, while the remaining fleet relies exclusively on accelerometers. The scattering transform is used to perform feature extraction, while principal component analysis provides a reduced, low dimensional data representation. This enables direct fatigue damage regression, parameterized from unlabeled usage data. Identification measurements allow for a physical interpretation of the reduced representation. The approach is demonstrated using experimental data from a sensor equipped eBike, which is made publicly available.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 107554 |
Fachzeitschrift | International Journal of Fatigue |
Jahrgang | 170 |
Publikationsstatus | Veröffentlicht - Mai 2023 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85147995368 |
---|---|
Mendeley | b350468f-3733-3b4a-b3b7-6816d61048de |
ORCID | /0000-0003-3358-1545/work/142237191 |
ORCID | /0000-0002-7431-8973/work/142250148 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Fatigue monitoring, Maneuver identification, Predictive maintenance, Scattering transform, Soft sensing