FacetE: Exploiting web tables for domain-specific word embedding evaluation
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Today's natural language processing and information retrieval systems heavily depend on word embedding techniques to represent text values. However, given a specific task deciding for a word embedding dataset is not trivial. Current word embedding evaluation methods mostly provide only a one-dimensional quality measure, which does not express how knowledge from different domains is represented in the word embedding models. To overcome this limitation, we provide a new evaluation data set called FacetE derived from 125M Web tables, enabling domain-sensitive evaluation. We show that FacetE can effectively be used to evaluate word embedding models. The evaluation of common general-purpose word embedding models suggests that there is currently no best word embedding for every domain.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | DBTest '20: Proceedings of the workshop on Testing Database Systems |
| Herausgeber (Verlag) | Association for Computing Machinery (ACM), New York |
| Seiten | 1-6 |
| Seitenumfang | 6 |
| ISBN (elektronisch) | 978-1-4503-8001-0 |
| Publikationsstatus | Veröffentlicht - 19 Juni 2020 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | MOD: International Conference on Management of Data (DBTest) |
|---|
Konferenz
| Titel | 2020 Workshop on Testing Database Systems, DBTest 2020 |
|---|---|
| Dauer | 19 Juni 2020 |
| Stadt | Portland |
| Land | USA/Vereinigte Staaten |
Externe IDs
| Scopus | 85086066357 |
|---|---|
| ORCID | /0000-0001-8107-2775/work/142253453 |