F and H-Triangles for v-Associahedra
Publikation: Beitrag in Fachzeitschrift › Konferenzartikel › Beigetragen › Begutachtung
Beitragende
Abstract
For any northeast path v, we define two bivariate polynomials associated with the v-associahedron: the F and the H-triangle. We prove combinatorially that we can obtain one from the other by an invertible transformation of variables. These polynomials generalize the classical F and H-triangles of F. Chapoton in type A. Our proof is completely new and has the advantage of providing a combinatorial explanation of the nature of the relation between the F and H-triangle.
Details
| Originalsprache | Englisch |
|---|---|
| Aufsatznummer | #44 |
| Fachzeitschrift | Séminaire Lotharingien de Combinatoire : SLC |
| Jahrgang | 2021 |
| Ausgabenummer | 85B |
| Publikationsstatus | Veröffentlicht - 2021 |
| Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- F-triangle, H-triangle, v-associahedron, v-Tamari lattice