Extreme Biomimetics: Designing of the First Nanostructured 3D Spongin-Atacamite Composite and its Application

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Dmitry Tsurkan - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Paul Simon - , Max Planck Institute for Chemical Physics of Solids (Autor:in)
  • Christian Schimpf - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Mykhaylo Motylenko - , Technische Universität Bergakademie Freiberg (Autor:in)
  • David Rafaja - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Friedrich Roth - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Dmytro S. Inosov - , Professur für Neutronenspektroskopie kondensierter Materie, Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien (Autor:in)
  • Anna A. Makarova - , Freie Universität (FU) Berlin (Autor:in)
  • Izabela Stepniak - , Poznań University of Technology (Autor:in)
  • Iaroslav Petrenko - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Armin Springer - , Universität Rostock (Autor:in)
  • Enrico Langer - , Professur für Mikrosystemtechnik, Professur für Oberflächenphysik, Institut für Halbleiter- und Mikrosystemtechnik (IHM) (Autor:in)
  • Anton A. Kulbakov - , Professur für Neutronenspektroskopie kondensierter Materie, Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien (Autor:in)
  • Maxim Avdeev - , Australian Nucl Sci & Technol Org, Australian Nuclear Science & Technology Organisation (Autor:in)
  • Artur R. Stefankiewicz - , Adam Mickiewicz University in Poznań (Autor:in)
  • Korbinian Heimler - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Olga Kononchuk - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Sebastian Hippmann - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Doreen Kaiser - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Christine Viehweger - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Anika Rogoll - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Alona Voronkina - , National Pirogov Memorial Medical University, Vinnytsya (Autor:in)
  • Valentin Kovalchuk - , National Pirogov Memorial Medical University, Vinnytsya (Autor:in)
  • Vasilii V. Bazhenov - , European XFEL (Autor:in)
  • Roberta Galli - , Medizinische Physik (Autor:in)
  • Mehdi Rahimi-Nasrabadi - , ITMO Univ, ITMO University, Mech & Opt, St Petersburg Natl Res Univ Informat Technol (Autor:in)
  • Serguei L. Molodtsov - , European XFEL (Autor:in)
  • Yvonne Joseph - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Carla Vogt - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Denis V. Vyalikh - , Institut für Festkörper- und Materialphysik, Donostia Int Phys Ctr DIPC, Ikerbasque Basque Foundation for Science (Autor:in)
  • Martin Bertau - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Hermann Ehrlich - , University of Toronto (Autor:in)

Abstract

The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano-level. It presents a challenge to obtain a holistic understanding of the mechanisms underlying the interaction of organic and inorganic phases under conditions of harsh chemical reactions for biopolymers. Yet, an understanding of these mechanisms can lead to the development of unusual-but functional-hybrid materials. In this work, a key way of designing centimeter-scale macroporous 3D composites, using renewable marine biopolymer spongin and a model industrial solution that simulates the highly toxic copper-containing waste generated in the production of printed circuit boards worldwide, is proposed. A new spongin-atacamite composite material is developed and its structure is confirmed using neutron diffraction, X-ray diffraction, high-resolution transmission electron microscopy/selected-area electron diffraction, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and electron paramagnetic resonance spectroscopy. The formation mechanism for this material is also proposed. This study provides experimental evidence suggesting multifunctional applicability of the designed composite in the development of 3D constructed sensors, catalysts, and antibacterial filter systems.

Details

OriginalspracheEnglisch
Aufsatznummer2101682
Seitenumfang14
FachzeitschriftAdvanced materials
Jahrgang33
Ausgabenummer30
PublikationsstatusVeröffentlicht - Juli 2021
Peer-Review-StatusJa

Externe IDs

Scopus 85107149383
ORCID /0000-0002-0633-0321/work/141544787

Schlagworte

Schlagwörter

  • atacamite, catalysts, composites, extreme biomimetics, sensors, spongin, tenorite, CRYSTAL-STRUCTURE, COPPER, NANOPARTICLES, BIOMATERIALS, CORROSION, MINERALS, COLLAGEN, XPS