Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Roberto Rizzato - , Technische Universität München, Università degli Studi di Bari Aldo Moro (Autor:in)
  • Martin Schalk - , Technische Universität München, Munich Center for Quantum Science and Technology (MCQST) (Autor:in)
  • Stephan Mohr - , Technische Universität München (Autor:in)
  • Jens C. Hermann - , Technische Universität München, Munich Center for Quantum Science and Technology (MCQST) (Autor:in)
  • Joachim P. Leibold - , Technische Universität München (Autor:in)
  • Fleming Bruckmaier - , Technische Universität München (Autor:in)
  • Giovanna Salvitti - , Technische Universität München, Università di Bologna (Autor:in)
  • Chenjiang Qian - , Technische Universität München (Autor:in)
  • Peirui Ji - , Technische Universität München (Autor:in)
  • Georgy V. Astakhov - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Ulrich Kentsch - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Manfred Helm - , Professur für Spektroskopie in der Halbleiterphysik (gB/HZDR), Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Andreas V. Stier - , Technische Universität München, Munich Center for Quantum Science and Technology (MCQST) (Autor:in)
  • Jonathan J. Finley - , Technische Universität München, Munich Center for Quantum Science and Technology (MCQST) (Autor:in)
  • Dominik B. Bucher - , Technische Universität München, Munich Center for Quantum Science and Technology (MCQST) (Autor:in)

Abstract

Negatively-charged boron vacancy centers (VB−) in hexagonal Boron Nitride (hBN) are attracting increasing interest since they represent optically-addressable qubits in a van der Waals material. In particular, these spin defects have shown promise as sensors for temperature, pressure, and static magnetic fields. However, their short spin coherence time limits their scope for quantum technology. Here, we apply dynamical decoupling techniques to suppress magnetic noise and extend the spin coherence time by two orders of magnitude, approaching the fundamental T 1 relaxation limit. Based on this improvement, we demonstrate advanced spin control and a set of quantum sensing protocols to detect radiofrequency signals with sub-Hz resolution. The corresponding sensitivity is benchmarked against that of state-of-the-art NV-diamond quantum sensors. This work lays the foundation for nanoscale sensing using spin defects in an exfoliable material and opens a promising path to quantum sensors and quantum networks integrated into ultra-thin structures.

Details

OriginalspracheEnglisch
Aufsatznummer5089
FachzeitschriftNature communications
Jahrgang14
Ausgabenummer1
PublikationsstatusVeröffentlicht - Dez. 2023
Peer-Review-StatusJa

Externe IDs

PubMed 37607945