Extended Berry Curvature Tail in Ferromagnetic Weyl Semimetals NiMnSb and PtMnSb

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Sukriti Singh - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Ana García-Page - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Jonathan Noky - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Subhajit Roychowdhury - , Max-Planck-Institut für Chemische Physik fester Stoffe, Indian Institute of Science Education and Research Bhopal (Autor:in)
  • Maia G. Vergniory - , Max-Planck-Institut für Chemische Physik fester Stoffe, Donostia International Physics Center (Autor:in)
  • Horst Borrmann - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Hans Henning Klauss - , Professur für Festkörperphysik/Elektronische Eigenschaften (Autor:in)
  • Claudia Felser - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Chandra Shekhar - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)

Abstract

Heusler compounds belong to a large family of materials and exhibit numerous physical phenomena with promising applications, particularly ferromagnetic Weyl semimetals for their use in spintronics and memory devices. Here, anomalous Hall transport is reported in the room-temperature ferromagnets NiMnSb (half-metal with a Curie temperature (TC) of 660 K) and PtMnSb (pseudo half-metal with a TC of 560 K). They exhibit 4 µB/f.u. magnetic moments and non-trivial topological states. Moreover, NiMnSb and PtMnSb are the first half-Heusler ferromagnets to be reported as Weyl semimetals, and they exhibit anomalous Hall conductivity (AHC) due to the extended tail of the Berry curvature in these systems. The experimentally measured AHC values at 2 K are 1.8 × 102 Ω−1cm−1 for NiMnSb and 2.2 × 103 Ω−1 cm−1 for PtMnSb. The comparatively large value between them can be explained in terms of the spin-orbit coupling strength. The combined approach of using ab initio calculations and a simple model shows that the Weyl nodes located far from the Fermi energy act as the driving mechanism for the intrinsic AHC. This contribution of topological features at higher energies can be generalized.

Details

OriginalspracheEnglisch
Aufsatznummer2404495
FachzeitschriftAdvanced science
Jahrgang11
Ausgabenummer31
PublikationsstatusVeröffentlicht - 21 Aug. 2024
Peer-Review-StatusJa

Externe IDs

PubMed 38889302