Exponential and polynomial tailbounds for change-point estimators
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Let X1n,...,Xnn be independent random elements with an unknown change point θ∈(0,1), that is Xin has a distribution ν1 or ν2, respectively, according to i≤[nθ] or i>[nθ]. We propose an estimator θn of θ, which is defined as the maximizer of a weighted empirical process on (0,1). Finding upper bounds of polynomial and exponential type for the tails of nθn-[nθ], we are able to derive rates of almost sure convergence, of distributional convergence, of Lp-convergence and of convergence in the Ky-Fan- and in the Prokhorov-metric.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 73-109 |
Seitenumfang | 37 |
Fachzeitschrift | Journal of Statistical Planning and Inference |
Jahrgang | 92 |
Ausgabenummer | 1-2 |
Publikationsstatus | Veröffentlicht - Jan. 2001 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- 62F05, 62J05, Change-point estimator, Exponential and polynomial tail bounds, Martingale maximal inequalities, Rates of convergence, Weighted empirical processes