Exponential and polynomial tailbounds for change-point estimators

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Let X1n,...,Xnn be independent random elements with an unknown change point θ∈(0,1), that is Xin has a distribution ν1 or ν2, respectively, according to i≤[nθ] or i>[nθ]. We propose an estimator θn of θ, which is defined as the maximizer of a weighted empirical process on (0,1). Finding upper bounds of polynomial and exponential type for the tails of nθn-[nθ], we are able to derive rates of almost sure convergence, of distributional convergence, of Lp-convergence and of convergence in the Ky-Fan- and in the Prokhorov-metric.

Details

OriginalspracheEnglisch
Seiten (von - bis)73-109
Seitenumfang37
FachzeitschriftJournal of Statistical Planning and Inference
Jahrgang92
Ausgabenummer1-2
PublikationsstatusVeröffentlicht - Jan. 2001
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • 62F05, 62J05, Change-point estimator, Exponential and polynomial tail bounds, Martingale maximal inequalities, Rates of convergence, Weighted empirical processes

Bibliotheksschlagworte