Exploring the influence of automated driving styles on network efficiency

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

  • Qing Long Lu - , Technische Universität München (Autor:in)
  • Moeid Qurashi - , Technische Universität München (Autor:in)
  • Damir Varesanovic - , Nervtech Ltd. (Autor:in)
  • Jaka Sodnik - , University of Ljubljana (Autor:in)
  • Constantinos Antoniou - , Technische Universität München (Autor:in)

Abstract

Automated vehicle technology can be beneficial for many aspects of transport, especially, improving traffic flow stability and efficiency. However, the influence of different automated driving styles on traffic efficiency is still not fully understood. Transport systems are very complex and non-linear, i.e. many participants with different characteristics interact with each other and the aggregated result of their interactions could cause a remarkable change in the entire network. Considering that automated vehicles with different driving styles interact with the environment in different ways, we try to understand the influence of different automated driving styles (e.g., cautious, normal, aggressive) on the important variables in traffic flow theory (e.g., speed) to reveal their impact on network efficiency. Characteristics of these driving styles are extracted by clustering the highD dataset and then, translated into different car-following models for simulation in the SUMO traffic simulator environment. Multiple scenarios of mixed traffic conditions (i.e. ranging different ratios of driving styles) are simulated on the network of Munich inner city.

Details

OriginalspracheEnglisch
Seiten (von - bis)380-387
Seitenumfang8
FachzeitschriftTransportation Research Procedia
Jahrgang52
PublikationsstatusVeröffentlicht - 2021
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

Titel23rd EURO Working Group on Transportation Meeting, EWGT 2020
Dauer16 - 18 September 2020
StadtPaphos
LandZypern

Externe IDs

ORCID /0000-0002-0135-6450/work/151982392

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • automated driving styles, Automated vehicles, network efficiency