Exploring Naming Inventories for Architectural Elements for Use in Multi-modal Machine Learning Applications*
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Computer vision models are increasingly relevant and useful to Digital History. Next to the increasingly complex neural models, data and data selection are an integral part of this process. In this paper, we examine and extend the data collection practices from a major recent paper in the domain of architectural element classification. We collected an image-text data set for a selection of 56 Baroque landmarks to be analysed in like manner. This different architectural domain yielded insights into the transferability of the original model and data collection procedures. Notably, the architectural domain also has an impact on the availability of classes of architectural elements as well as the performance of the models classifying them.
Details
Originalsprache | Englisch |
---|---|
Titel | Computational Methods in the Humanities 2022 (COMHUM 2022) |
Seiten | 95-105 |
Seitenumfang | 11 |
Publikationsstatus | Veröffentlicht - 2023 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Publikationsreihe
Reihe | CEUR Workshop Proceedings |
---|---|
Band | 3602 |
ISSN | 1613-0073 |
Konferenz
Titel | 2nd Workshop on Computational Methods in the Humanities, COMHUM 2022 |
---|---|
Dauer | 9 - 10 Juni 2022 |
Stadt | Lausanne |
Land | Schweiz |
Externe IDs
ORCID | /0000-0002-2456-9731/work/155292070 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Architecture, Art History, Computer Vision, Machine Learning