Exploiting prior knowledge and gene distances in the analysis of tumor expression profiles with extended Hidden Markov Models

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Michael Seifert - , Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (Autor:in)
  • Marc Strickert - , Universität Siegen (Autor:in)
  • Alexander Schliep - , Rutgers - The State University of New Jersey, New Brunswick (Autor:in)
  • Ivo Grosse - , Martin-Luther-Universität Halle-Wittenberg (Autor:in)

Abstract

MOTIVATION: Changes in gene expression levels play a central role in tumors. Additional information about the distribution of gene expression levels and distances between adjacent genes on chromosomes should be integrated into the analysis of tumor expression profiles.

RESULTS: We use a Hidden Markov Model with distance-scaled transition matrices (DSHMM) to incorporate chromosomal distances of adjacent genes on chromosomes into the identification of differentially expressed genes in breast cancer. We train the DSHMM by integrating prior knowledge about potential distributions of expression levels of differentially expressed and unchanged genes in tumor. We find that especially the combination of these data and to a lesser extent the modeling of distances between adjacent genes contribute to a substantial improvement of the identification of differentially expressed genes in comparison to other existing methods. This performance benefit is also supported by the identification of genes well known to be associated with breast cancer. That suggests applications of DSHMMs for screening of other tumor expression profiles.

AVAILABILITY: The DSHMM is available as part of the open-source Java library Jstacs (www.jstacs.de/index.php/DSHMM).

Details

OriginalspracheEnglisch
Aufsatznummerbtr199
Seiten (von - bis)1645-1652
Seitenumfang8
FachzeitschriftBioinformatics
Jahrgang27
Ausgabenummer12
PublikationsstatusVeröffentlicht - 15 Juni 2011
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 79958106048
ORCID /0000-0002-2844-053X/work/153655340

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Breast Neoplasms/genetics, Chromosome Mapping, Female, Gene Expression, Gene Expression Profiling/methods, Gene Expression Regulation, Neoplastic, Genes, Neoplasm, Humans, Markov Chains, Models, Genetic