Experimental Determination of Momentum-Resolved Electron-Phonon Coupling

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Matteo Rossi - , Polytechnic University of Milan, Max-Planck-Institut für Festkörperforschung (Autor:in)
  • Riccardo Arpaia - , Polytechnic University of Milan, Chalmers University of Technology (Autor:in)
  • Roberto Fumagalli - , Polytechnic University of Milan (Autor:in)
  • Marco Moretti Sala - , Polytechnic University of Milan (Autor:in)
  • Davide Betto - , European Synchrotron Radiation Facility (Autor:in)
  • Kurt Kummer - , European Synchrotron Radiation Facility (Autor:in)
  • Gabriella M. De Luca - , Università degli Studi di Napoli Federico II, National Research Council of Italy (CNR) (Autor:in)
  • Jeroen Van Den Brink - , Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien, Professur für Festkörpertheorie (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Marco Salluzzo - , National Research Council of Italy (CNR) (Autor:in)
  • Nicholas B. Brookes - , European Synchrotron Radiation Facility (Autor:in)
  • Lucio Braicovich - , Polytechnic University of Milan, European Synchrotron Radiation Facility (Autor:in)
  • Giacomo Ghiringhelli - , Polytechnic University of Milan (Autor:in)

Abstract

We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorption resonance. We apply it to the cuprate parent compound NdBa2Cu3O6 and find that the electronic coupling to the oxygen half-breathing phonon branch is strongest at the Brillouin zone boundary, where it amounts to ∼0.17 eV, in agreement with previous studies. In principle, this method is applicable to any absorption resonance suitable for RIXS measurements and will help to define the contribution of lattice vibrations to the peculiar properties of quantum materials.

Details

OriginalspracheEnglisch
Aufsatznummer027001
FachzeitschriftPhysical review letters
Jahrgang123
Ausgabenummer2
PublikationsstatusVeröffentlicht - 8 Juli 2019
Peer-Review-StatusJa

Externe IDs

PubMed 31386544

Schlagworte

ASJC Scopus Sachgebiete