Experimental and Theoretical Study on the Role of Monomeric vs Dimeric Rhodium Oxazolidinone Norbornadiene Complexes in Catalytic Asymmetric 1,2- And 1,4-Additions

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Manuel Kirchhof - , Universität Stuttgart (Autor:in)
  • Katrin Gugeler - , Universität Stuttgart (Autor:in)
  • Felix Richard Fischer - , Universität Stuttgart (Autor:in)
  • Michal Nowakowski - , Universität Paderborn (Autor:in)
  • Alina Bauer - , Universität Stuttgart (Autor:in)
  • Sonia Alvarez-Barcia - , Universität Stuttgart (Autor:in)
  • Karina Abitaev - , Universität Stuttgart (Autor:in)
  • Marc Schnierle - , Universität Stuttgart (Autor:in)
  • Yaseen Qawasmi - , Universität Stuttgart (Autor:in)
  • Wolfgang Frey - , Universität Stuttgart (Autor:in)
  • Angelika Baro - , Universität Stuttgart (Autor:in)
  • Deven P. Estes - , Universität Stuttgart (Autor:in)
  • Thomas Sottmann - , Universität Stuttgart (Autor:in)
  • Mark R. Ringenberg - , Universität Stuttgart (Autor:in)
  • Bernd Plietker - , Professur für Organische Chemie (I) (OC1), Technische Universität Dresden (Autor:in)
  • Matthias Bauer - , Universität Paderborn (Autor:in)
  • Johannes Kästner - , Universität Stuttgart (Autor:in)
  • Sabine Laschat - , Universität Stuttgart (Autor:in)

Abstract

The influence of nuclearity and charge of chiral Rh diene complexes on the activity and enantioselectivity in catalytic asymmetric 1,2-additions of organoboron reagents to N-tosylimines and 1,4-additions to enones was investigated. For this purpose, cationic dimeric Rh(I) complex [(Rh(1))2Cl]SbF6 and cationic monomeric Rh(I) complex [RhOH2(2)]SbF6 were synthesized from oxazolidinone-substituted 3-phenylnorbornadiene ligands 1 and 2, which differ in the substitution pattern at oxazolidinone C-5′ (CMe2 vs CH2) and compared with the corresponding neutral dimeric and monomeric Rh(I) complexes [RhCl(1)]2 and [RhCl(2)]. Structural, electronic, and mechanistic insights were gained by X-ray crystallography, cyclic voltammetry (CV), X-ray absorption spectroscopy (XAS), and DFT calculations. CV revealed an increased stability of cationic vs neutral Rh complexes toward oxidation. Comparison of solid-state and solution XAS (extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES)) data showed that the monomeric Rh complex [RhCl(2)] maintained its electronic state and coordination sphere in solution, whereas the dimeric Rh complex [RhCl(1)]2 exchanges bridging chloro ligands by dioxane molecules in solution. In both 1,2- and 1,4-addition reactions, monomeric Rh complexes [RhCl(2)] and [RhOH2(2)]SbF6 gave better yields as compared to dimeric complexes [RhCl(1)]2 and [(Rh(1))2Cl]SbF6. Regarding enantioselectivities, dimeric Rh species [RhCl(1)]2 and [(Rh(1))2Cl]SbF6 performed better than monomeric Rh species in the 1,2-addition, while the opposite was true for the 1,4-addition. Neutral Rh complexes performed better than cationic complexes. Microemulsions improved the yields of 1,2-additions due to a most probable enrichment of Rh complexes in the amphiphilic film and provided a strong influence of the complex nuclearity and charge on the stereocontrol. A strong nonlinear-like effect (NLLE) was observed in 1,2-additions, when diastereomeric mixtures of ligands 1 and epi-1 were employed. The pronounced substrate dependency of the 1,4-addition could be rationalized by DFT calculations.

Details

OriginalspracheEnglisch
Seiten (von - bis)3131-3145
Seitenumfang15
FachzeitschriftOrganometallics
Jahrgang39
Ausgabenummer17
PublikationsstatusVeröffentlicht - 14 Sept. 2020
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-8423-6173/work/142250831