Experimental analysis of lifelines in a 15,000 L bioreactor by means of Lagrangian Sensor Particles

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Sebastian Hofmann - , Technische Universität Hamburg (Autor:in)
  • Lukas Buntkiel - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Ryan Rautenbach - , Technische Universität Hamburg (Autor:in)
  • Lena Gaugler - , Universität Stuttgart (Autor:in)
  • Yifan Ma - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Ingrid Haase - , Technische Universität Hamburg (Autor:in)
  • Jürgen Fitschen - , Boehringer Ingelheim GmbH (Autor:in)
  • Thomas Wucherpfennig - , Boehringer Ingelheim GmbH (Autor:in)
  • Sebastian Felix Reinecke - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Marko Hoffmann - , Technische Universität Hamburg (Autor:in)
  • Ralf Takors - , Universität Stuttgart (Autor:in)
  • Uwe Hampel - , Professur für Bildgebende Messverfahren für die Energie- und Verfahrenstechnik (g.B. HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Michael Schlüter - , Technische Universität Hamburg (Autor:in)

Abstract

This study employs Lagrangian Sensor Particles (LSPs) with a diameter of 40 mm equipped with a pressure sensor to investigate cell lifelines in a 15,000 L stirred tank reactor (STR) with three Elephant Ear impellers. The Stokes number of the LSPs is approx. 0.004 on a macro-scale. The vertical probability of presence, axial velocity profiles, circulation time distributions, and residence time distributions are quantified to analyze single-phase mixing heterogeneities, detect hydrodynamic compartments and conduct a Lagrangian regime analysis. Results reveal a similarly distributed probability of presence in the vertical reactor center but emphasize the LSP's sensitivity to fluctuating densities. Axial velocity distributions illustrate characteristic impeller-induced flow patterns, and circulation time distributions identify three compartments with comparatively shorter times in the axial center. Residence time distributions exhibit a similar compartmentalized profile. Moreover, the study estimates a potential oxygen deprivation zone for CHO cells in the upper compartment and demonstrates the LSP's efficacy in characterizing impeller systems. Contrary to literature, the ratio of examined global mixing times to circulation times is 1.0, highlighting macro-scale mixing. The research underscores that LSPs offer crucial insights into industrial-scale STRs, specifically for determining hydrodynamic compartments without having optical access.

Details

OriginalspracheEnglisch
Seiten (von - bis)695-712
Seitenumfang18
FachzeitschriftChemical Engineering Research and Design
Jahrgang205
PublikationsstatusVeröffentlicht - Mai 2024
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • Circulation time distribution, Elephant Ear impellers, Industrial scale, Lagrangian regime analysis, Lagrangian Sensor Particles, Residence time distribution