Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium-sulfur batteries

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Mahdokht Shaibani - , Monash University (Autor:in)
  • Meysam Sharifzadeh Mirshekarloo - , Monash University (Autor:in)
  • Ruhani Singh - , Commonwealth Scientific & Industrial Research Organisation (CSIRO) (Autor:in)
  • Christopher D. Easton - , Commonwealth Scientific & Industrial Research Organisation (CSIRO) (Autor:in)
  • M. C. Dilusha Cooray - , Monash University (Autor:in)
  • Nicolas Eshraghi - , University of Liege (Autor:in)
  • Thomas Abendroth - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Susanne Dörfler - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Holger Althues - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Stefan Kaskel - , Professur für Anorganische Chemie (I) (AC1), Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Anthony F. Hollenkamp - , Commonwealth Scientific & Industrial Research Organisation (CSIRO) (Autor:in)
  • Matthew R. Hill - , Commonwealth Scientific & Industrial Research Organisation (CSIRO), Monash University (Autor:in)
  • Mainak Majumder - , Monash University (Autor:in)

Abstract

Lithium-sulfur batteries can displace lithium-ion by delivering higher specific energy. Presently, however, the superior energy performance fades rapidly when the sulfur electrode is loaded to the required levels—5 to 10 mg cm−2—due to substantial volume change of lithiation/delithiation and the resultant stresses. Inspired by the classical approaches in particle agglomeration theories, we found an approach that places minimum amounts of a high-modulus binder between neighboring particles, leaving increased space for material expansion and ion diffusion. These expansion-tolerant electrodes with loadings up to 15 mg cm−2 yield high gravimetric (>1200 mA·hour g−1) and areal (19 mA·hour cm−2) capacities. The cells are stable for more than 200 cycles, unprecedented in such thick cathodes, with Coulombic efficiency above 99%.

Details

OriginalspracheEnglisch
Aufsatznummereaay2757
FachzeitschriftScience advances
Jahrgang6
Ausgabenummer1
PublikationsstatusVeröffentlicht - 3 Jan. 2020
Peer-Review-StatusJa

Externe IDs

PubMed 31922008

Schlagworte

ASJC Scopus Sachgebiete