Exciton Propagation and Halo Formation in Two-Dimensional Materials
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
The interplay of optics, dynamics, and transport is crucial for the design of novel optoelectronic devices, such as photodetectors and solar cells. In this context, transition-metal dichalcogenides (TMDs) have received much attention. Here, strongly bound excitons dominate optical excitation, carrier dynamics, and diffusion processes. While the first two have been intensively studied, there is a lack of fundamental understanding of nonequilibrium phenomena associated with exciton transport that is of central importance (e.g., for high-efficiency light harvesting). In this work, we provide microscopic insights into the interplay of exciton propagation and many-particle interactions in TMDs. On the basis of a fully quantum mechanical approach and in excellent agreement with photoluminescence measurements, we show that Auger recombination and emission of hot phonons act as a heating mechanism giving rise to strong spatial gradients in excitonic temperature. The resulting thermal drift leads to an unconventional exciton diffusion characterized by spatial exciton halos.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 7317-7323 |
Seitenumfang | 7 |
Fachzeitschrift | Nano letters |
Jahrgang | 19 |
Ausgabenummer | 10 |
Publikationsstatus | Veröffentlicht - 9 Okt. 2019 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Externe IDs
PubMed | 31532993 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Auger scattering, exciton diffusion, halos, hot phonons