Exciton efficiency beyond the spin statistical limit in organic light emitting diodes based on anthracene derivatives

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Nidhi Sharma - , University of St Andrews (Autor:in)
  • Michael Yin Wong - , University of St Andrews (Autor:in)
  • David Hall - , University of St Andrews, Universite de Mons (Autor:in)
  • Eduard Spuling - , University of St Andrews (Autor:in)
  • Francisco Tenopala-Carmona - , University of St Andrews (Autor:in)
  • Alberto Privitera - , University of Oxford (Autor:in)
  • Graeme Copley - , University of St Andrews (Autor:in)
  • David B. Cordes - , University of St Andrews (Autor:in)
  • Alexandra M. Z. Slawin - , University of St Andrews (Autor:in)
  • Caroline Murawski - , University of St Andrews (Autor:in)
  • Malte C. Gather - , University of St Andrews (Autor:in)
  • David Beljonne - , Universite de Mons (Autor:in)
  • Yoann Olivier - , Universite de Mons, Universite de Namur (Autor:in)
  • Ifor D. W. Samuel - , University of St Andrews (Autor:in)
  • Eli Zysman-Colman - , University of St Andrews (Autor:in)

Abstract

We report two donor–acceptor (D–A) materials based on a cyanoanthracene acceptor paired with diphenylamine (DPAAnCN) and carbazole (CzAnCN) donor moieties. These compounds show hybrid locally excited (LE) charge-transfer (CT) excited states (HLCT), which we demonstrated through a combined photophysical and computational study. Vacuum-deposited organic light emitting diodes (OLEDs) using these HLCT emitters exhibit maximum external quantum efficiencies (EQEmax) close to 6%, with impressive exciton utilization efficiency (Φs) of >50%, far exceeding the spin statistic limit of 25%. We rule out triplet–triplet annihilation and thermally activated delayed fluorescence as triplet harvesting mechanisms along with horizontal orientation of emitters to enhance light outcoupling and, instead, propose a “hot exciton” channel involving the nearly isoenergetic T2 and S1 states.

Details

OriginalspracheEnglisch
Seiten (von - bis)3773-3783
Seitenumfang11
FachzeitschriftJournal of Materials Chemistry. C, Materials for optical and electronic devices
Jahrgang8
Ausgabenummer11
PublikationsstatusVeröffentlicht - 28 Jan. 2020
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

doi https://doi.org/10.1039/C9TC06356K
Scopus 85082297917

Schlagworte