Exact asymptotic formulas for the heat kernels of space and time-fractional equations
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
This paper aims to study the asymptotic behaviour of the fundamental solutions (heat kernels) of non-local (partial and pseudo differential) equations with fractional operators in time and space. In particular, we obtain exact asymptotic formulas for the heat kernels of time-changed Brownian motions and Cauchy processes. As an application, we obtain exact asymptotic formulas for the fundamental solutions to the n-dimensional fractional heat equations in both time and space ∂β /∂tβ u(t, x) = −(−Δx)γu(t, x), β, γ ∈ (0, 1).
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 968-989 |
| Seitenumfang | 22 |
| Fachzeitschrift | Fractional Calculus and Applied Analysis |
| Jahrgang | 22 |
| Ausgabenummer | 4 |
| Publikationsstatus | Veröffentlicht - 1 Aug. 2019 |
| Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Asymptotic formula, Heat kernel, Inverse subordinator, Space-fractional equation, Subordinator, Time-fractional equation