Evolving ensemble-clustering to a feedback-driven process

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Data clustering is a highly used knowledge extraction technique and is applied in more and more application domains. Over the last years, a lot of algorithms have been proposed that are often complicated and/or tailored to specific scenarios. As a result, clustering has become a hardly accessible domain for non-expert users, who face major difficulties like algorithm selection and parameterization. To overcome this issue, we develop a novel feedback-driven clustering process using a new perspective of clustering. By substituting parameterization with user-friendly feedback and providing support for result interpretation, clustering becomes accessible and allows the step-by-step construction of a satisfying result through iterative refinement.

Details

OriginalspracheEnglisch
TitelProceedings - 10th IEEE International Conference on Data Mining Workshops, ICDMW 2010
Seiten401-408
Seitenumfang8
ISBN (elektronisch)978-0-7695-4257-7
PublikationsstatusVeröffentlicht - 2010
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE International Conference on Data Mining Workshops (ICDM Workshops)
ISSN2375-9232

Konferenz

Titel10th IEEE International Conference on Data Mining Workshops, ICDMW 2010
Dauer14 - 17 Dezember 2010
StadtSydney, NSW
LandAustralien

Externe IDs

ORCID /0000-0001-8107-2775/work/200630380

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

ASJC Scopus Sachgebiete

Schlagwörter

  • Ensemble-clustering, Feedback, Visualization