Evolving ensemble-clustering to a feedback-driven process
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Data clustering is a highly used knowledge extraction technique and is applied in more and more application domains. Over the last years, a lot of algorithms have been proposed that are often complicated and/or tailored to specific scenarios. As a result, clustering has become a hardly accessible domain for non-expert users, who face major difficulties like algorithm selection and parameterization. To overcome this issue, we develop a novel feedback-driven clustering process using a new perspective of clustering. By substituting parameterization with user-friendly feedback and providing support for result interpretation, clustering becomes accessible and allows the step-by-step construction of a satisfying result through iterative refinement.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Proceedings - 10th IEEE International Conference on Data Mining Workshops, ICDMW 2010 |
| Seiten | 401-408 |
| Seitenumfang | 8 |
| ISBN (elektronisch) | 978-0-7695-4257-7 |
| Publikationsstatus | Veröffentlicht - 2010 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | IEEE International Conference on Data Mining Workshops (ICDM Workshops) |
|---|---|
| ISSN | 2375-9232 |
Konferenz
| Titel | 10th IEEE International Conference on Data Mining Workshops, ICDMW 2010 |
|---|---|
| Dauer | 14 - 17 Dezember 2010 |
| Stadt | Sydney, NSW |
| Land | Australien |
Externe IDs
| ORCID | /0000-0001-8107-2775/work/200630380 |
|---|
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
ASJC Scopus Sachgebiete
Schlagwörter
- Ensemble-clustering, Feedback, Visualization