Evolving Dynamic Collective Behaviors by Minimizing Surprise

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Our minimize surprise method evolves swarm robot controllers using a task-independent reward for prediction accuracy. Since no specific task is rewarded during optimization, various collective behaviors can emerge, as has also been shown in previous work. But so far, all generated behaviors were static or repetitive allowing for easy sensor predictions due to mostly constant sensor input. Our goal is to generate more dynamic behaviors that vary behavior based on changes in sensor input. We modify environment and agent capabilities, and extend the minimize surprise reward with additional components rewarding homing or curiosity. In preliminary experiments, we were able to generate first dynamic behaviors through our modifications, providing a promising basis for future work.

Details

OriginalspracheEnglisch
TitelALIFE 2023: Ghost in the Machine
Seiten354-356
Seitenumfang3
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheALIFE : proceedings of the artificial life conference.

Konferenz

Titel2023 Conference on Artificial Life
UntertitelGhost in the machine
KurztitelALIFE 2023
Dauer24 - 28 Juli 2023
Webseite
OrtClark Memorial Student Center
StadtSapporo
LandJapan

Schlagworte

ASJC Scopus Sachgebiete