Evaluation of machine learning methods for seizure prediction in epilepsy

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Epilepsy affects about 50 million people worldwide of which one third is refractory to medication. An automated and reliable system that warns of impending seizures would greatly improve patient's quality of life by overcoming the uncertainty and helplessness due to the unpredicted events. Here we present new seizure prediction results including a performance comparison of different methods. The analysis is based on a new set of intracranial EEG data that has been recorded in our working group during presurgical evaluation. We applied two different methods for seizure prediction and evaluated their performance pseudoprospectively. The comparison of this evaluation with common statistical evaluation reveals possible reasons for overly optimistic estimations of the performance of seizure forecasting systems.

Details

OriginalspracheEnglisch
Seiten (von - bis)109-112
Seitenumfang4
FachzeitschriftCurrent Directions in Biomedical Engineering
Jahrgang5
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Sept. 2019
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-7436-0103/work/142240239
ORCID /0009-0001-1168-3666/work/153654954
ORCID /0000-0001-9875-3534/work/154191168

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • deep learning, epilepsy, machine learning, seizure forecasting, seizure prediction