Evaluation of Glyoxal-Based Electrolytes for Lithium-Sulfur Batteries

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Sebastian Kirchhoff - , Professur für Anorganische Chemie (I) (AC1), Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Christian Leibing - , Friedrich-Schiller-Universität Jena (Autor:in)
  • Paul Härtel - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Thomas Abendroth - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Susanne Dörfler - , Professur für Anorganische Chemie (I) (AC1), Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Holger Althues - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Stefan Kaskel - , Professur für Anorganische Chemie (I) (AC1), Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Andrea Balducci - , Friedrich-Schiller-Universität Jena (Autor:in)

Abstract

Lithium-sulfur batteries (LSBs) are among the most promising next generation battery technologies. First prototype cells show higher specific energies than conventional Li-ion batteries (LIBs) and the active material is cost-effective and ubiquitously abundant. However, Li-S batteries still suffer from several limitations, mainly the cycle life, inflation of cells, and also the lack of a component production value chain. As this battery system is based on a complex conversion mechanism, the electrolyte plays a key role, not only for specific energy, but also for rate capability, cycle stability and costs. Herein, we report on electrolytes based on glyoxylic-acetal based solvents, Tetraethoxyglyoxal (TEG) and Tetramethoxyglyoxal (TMG). These solvents have been examined before for supercapacitors and LIBs, but never for LSBs, although they exhibit some beneficial properties, and the production value chain has already been well established as they are precursors for several chemicals. A specially adapted electrolyte composition is established by adjusting solvent ratio and LiTFSI concentration in a TXG:DOL solvent blend. The obtained electrolytes show long cycle life as well as high coulombic efficiencies without the use of LiNO3, a component leading normally to cell inflation and safety issues. In addition, a successful evaluation in a multilayer Li-S-pouch cell was performed. The electrolytes were thoroughly characterized, and their sulfur conversion mechanism is discussed.

Details

OriginalspracheEnglisch
Aufsatznummer210
Seitenumfang16
FachzeitschriftBatteries
Jahrgang9
Ausgabenummer4
Frühes Online-Datum31 März 2023
PublikationsstatusVeröffentlicht - Apr. 2023
Peer-Review-StatusJa

Externe IDs

WOS 000977310700001

Schlagworte

Schlagwörter

  • electrolyte, glyoxal, lithium-sulfur, polysulfide solubility, pouch cell, Electrolyte, Lithium-sulfur, Polysulfide solubility, Glyoxal, Pouch cell